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Objective: Independent component analysis (ICA) can disentangle multi-channel electroencephalogram
(EEG) signals into a number of artifacts and brain-related signals. However, the identification and inter-
pretation of independent components is time-consuming and involves subjective decision making. We
developed and evaluated a semi-automatic tool designed for clustering independent components from
different subjects and/or EEG recordings.
Methods: CORRMAP is an open-source EEGLAB plug-in, based on the correlation of ICA inverse weights,
and finds independent components that are similar to a user-defined template. Component similarity is
measured using a correlation procedure that selects components that pass a threshold. The threshold can
be either user-defined or determined automatically. CORRMAP clustering performance was evaluated by
comparing it with the performance of 11 users from different laboratories familiar with ICA.
Results: For eye-related artifacts, a very high degree of overlap between users (phi > 0.80), and between
users and CORRMAP (phi > 0.80) was observed. Lower degrees of association were found for heartbeat
artifact components, between users (phi < 0.70), and between users and CORRMAP (phi < 0.65).
Conclusions: These results demonstrate that CORRMAP provides an efficient, convenient and objective
way of clustering independent components.
Significance: CORRMAP helps to efficiently use ICA for the removal EEG artifacts.
� 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction and less subjective correction procedure for multi-channel EEG
For many years, electroencephalogram (EEG) recordings have
been successfully used in clinical diagnosis and cognitive brain re-
search. However, a key characteristic of scalp-recorded EEG signals
is that they consist of a mixture of an unknown number of brain
and non-brain contributions. In other words, the EEG signals suffer
from the presence of various artifacts, which renders the identifica-
tion and analysis of brain-related EEG activity difficult (Makeig
et al., 2004a). Here we present a new approach to the identification
of prominent EEG artifacts. In combination with independent com-
ponent analysis (ICA), this approach provides an efficient, accurate
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recordings.
Over the past few years, ICA has gained considerable popularity

for the processing of EEG signals (e.g., Debener et al., 2006; Makeig
et al., 2004a). ICA performs a linear un-mixing of multi-channel
EEG recordings into maximally temporally independent statistical
source signals, which are further referred to as independent com-
ponents (ICs). ICA belongs to a larger family of blind source separa-
tion algorithms that separate mixed signals without the aid of
detailed a priori information about the nature of these signals
(Hyvärinen et al., 2001). Given the lack of knowledge about the ex-
act nature, number, and configuration of neural and non-neural
sources contributing to the scalp-recorded EEG, blind source sepa-
ration algorithms are particularly well suited to the decomposition
of EEG data. Indeed, several laboratories have successfully demon-
strated that ICA can separate multi-channel EEG recordings into
meaningful brain and non-brain processes. Typical examples in-
ed by Elsevier Ireland Ltd. All rights reserved.

mailto:stefan@debener.de
http://www.sciencedirect.com/science/journal/13882457
http://www.elsevier.com/locate/clinph


F.C. Viola et al. / Clinical Neurophysiology 120 (2009) 868–877 869
clude the removal of artifacts, in particular eye blinks and lateral
eye movements (Jung et al., 2000a,b); the removal of stimulus-
locked electrical artifacts from cochlear implants (Debener et al.,
2008a; Gilley et al., 2006); or the removal of residual ballistocardi-
ogram and magnetic resonance imaging (MRI) gradient artifact
from EEG data recorded inside the MRI (Debener et al., 2007,
2008b; Eichele et al., 2005; Feige et al., 2005; Onton et al., 2006).
Moreover, ICA has been used for the identification of neuronal
event-related oscillations (Makeig et al., 2002; Onton et al., 2005)
and event-related potentials (Debener et al., 2005a,b). A thorough
discussion of the concepts related to the application of ICA to
EEG data is provided by Onton et al. (2006).

From a practical point of view, the efficient removal of EEG
artifacts is very desirable, as a proper correction substantially
improves the number of trials that can be retained for event-re-
Fig. 1. ICA-based eye blink artifact correction, illustrated for three different datasets reco
channels, respectively. Top row shows 10 representative eye blinks at a channel in close pr
of the international 10–20 system, and the mean voltage map for these eye blinks. Middle
units) together with the 10 back-projected eye blinks at �Fp1. Bottom row shows the res
row. Inspection of maps and voltage traces in the bottom row indicates near perfect eye b
be seen in the 128 channel dataset, illustrating our common observation that eye blinks c
lated EEG analysis. Some studies have suggested (Debener et al.,
2007; Joyce et al., 2004) that the removal of some EEG artifacts
by means of ICA could be implemented as a fully automatic pro-
cedure if a well defined criterion or template were provided.
However, it is still necessary and often mandatory to visually in-
spect and evaluate the quality of ICA decompositions before arti-
fact processing.

Regarding eye blink artifacts, ICA-based correction compares
favourably to more frequently used linear regression procedures
(Joyce et al., 2004). The eye blink correction quality that can be
achieved by means of ICA is illustrated in Fig. 1. As can be seen, ICA
finds components that closely resemble the topography and time
course of single, representative eye blinks, and thus can separate this
artifact from other EEG activity. However, the user is left with the
problem of component selection, interpretation and clustering, be-
rded in different laboratories and based on 30 (left), 68 (middle) and 128 (right) EEG
oximity (68 and 128 channel datasets), or corresponding to (30 channel dataset) Fp1

row shows the identified ICA eye blink component map (inverse weights, in arbitrary
ult of the back-projection of all components except for the one shown in the middle
link correction for the 30 and the 68 channel datasets. Residual eye blink activity can
an be represented by more than one ICA component in high-density EEG recordings.
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cause ICA is usually applied to single subject datasets (for review, see
Onton et al., 2006). For example, if 64-channel EEG were recorded
from 20 subjects, 1280 components would require evaluation. A
number of different methods can be used to guide the IC identifica-
tion and selection process, such as visual inspection of IC properties
(Debener et al., 2005a), a selection based on IC topographies and
experimental condition effects (Debener et al., 2005b) or more for-
mal cluster analysis procedures (e.g., Makeig et al., 2004b).

Formal cluster approaches based on the modified Mahalanobis
distance are part of the EEGLAB open source environment (Delor-
me and Makeig, 2004). Types of IC information or features that
can jointly be used for clustering comprise IC topographies (i.e., in-
verse ICA weights), event-related potentials (ERPs, i.e., component
activation time-domain averages), spectra, time–frequency results,
and source localization information. However, this approach leaves
the user with a large number of parameters to determine by trial
and error, as the dimensionality and relative weight for each of
these features requires specification. Accordingly, clustering based
on a joint consideration of multiple features is a time consuming
and difficult task, regardless of the actual cluster algorithm used.
Fig. 2. Schematic flow chart of the CORRMAP tool. The main inputs are a template ICA
selected or calculated by the tool (automatic mode). The template is compared with all c
with an absolute correlation equal to or greater than TH are selected to be part of the c
(usually 1–3) components per dataset are considered. This parameter can be changed b
procedure is repeated in a second step using this new map as the template (right colum
selected template. In automatic mode the procedure is repeated for N iterations utilizi
suggested as the automatic correlation threshold.
Even if an optimal configuration were to be found, an inevitable
problem would still be the need to re-cluster or re-group the first
level results, which would also be guided by subjective decision
making rather than objective, data-driven criteria.

We developed a new, simple way of clustering, named CORRMAP,
designed to identify certain prominent artifact ICs across subjects in
a semi-automatic way with full user control but using a statistically
guided cluster definition. We validated the performance of our
template-correlation based cluster approach by comparing the
results with the identification and classification of ICs representing
various EEG artifacts from 11 different EEGLAB users who were
familiar with ICA. This test data comprised 4256 ICs from three
different studies recorded in three different laboratories.

2. Methods

2.1. CORRMAP description

CORRMAP is a semi-automatic ICA clustering tool. It requires as
its main input a template map (inverse IC weights) and it operates
component map selected by the user and a correlation threshold (TH) that can be
omponent maps from all datasets by calculating a correlation value. All components
luster and the mean correlation is calculated after Fisher z transformation. Up to X
y the user. An average map is calculated for the clustered components. The same
n). A similarity index informs about the dependency of the result on the originally
ng different TH values and the TH which shows the maximum similarity index is
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in two different modes. In the automatic mode, CORRMAP identifies
all ICs correlating with the template above an automatically deter-
mined threshold (see below). In the manual mode, CORRMAP iden-
tifies all ICs correlating with the template above a user specified
threshold. A schematic illustration of all processing steps involved
is shown in Fig. 2.

The core of the algorithm is a two-step loop. In the first step
(Fig. 2, left) the inverse weights (i.e., IC maps) from a selected tem-
plate IC are correlated with all ICs from all datasets. For each data-
set, CORRMAP selects up to three ICs with the largest supra
threshold correlation with the template. The maximum number
of ICs selected can be changed by the user. This approach was cho-
sen because in high-density EEG recordings, the same process (e.g.,
eye blinks) can be represented by more than one IC (e.g., Onton
et al., 2006). Across all datasets, the selected ICs are then sorted
in descending order of correlation. Here, absolute correlations are
used to take into account the sign ambiguity problem (Onton
et al., 2006). The mean correlation of a resulting cluster is then
computed via Fisher’s z transform, to account for the non-normal
distribution of correlation values. Next, an average cluster map is
calculated, after inversion of those ICs showing a negative correla-
tion (sign ambiguity problem) and root mean square (RMS) nor-
malization of each individual IC.

In the second step, the average cluster map obtained in the first
step is then used as a new template and the same process is re-
peated (Fig. 2). This step evaluates the dependence of a cluster
on the template IC initially selected. A similarity index (SI) was de-
fined as one minus the absolute difference between the mean cor-
relation values obtained from steps 1 and 2. A value close to 1
indicates that the resulting cluster is robust against the selection
of the initial map, whereas a small value indicates that the initial
template is not very representative of the cluster. For each of the
two processing steps, a summary plot showing the template, the
selected ICs, their correlations with the template and further clus-
ter information, is produced.

The correlation threshold initially used can either be given as an
input parameter (manual mode) or can be determined automati-
cally using an iterative process (automatic mode). In automatic
mode, this process consists of repeating the two core steps de-
scribed above using a range of correlations from 0.95 to 0.80 in
steps of 0.01. This range and step size (determined in pilot tests)
results in 16 iterations returning 16 similarity indices. In cases
where correlations below 0.80 are considered, CORRMAP calcu-
lates additional iterations ranging from 0.79 to 0.55 in steps of
0.01. The final correlation threshold is then determined by choos-
ing the iteration that returned the maximum SI. This procedure is
based on the rationale that, with a low correlation threshold, qual-
itatively different maps would be included in the clusters, resulting
in a smaller SI.

The default ICA algorithm used by EEGLAB (Delorme and
Makeig, 2004) is Infomax ICA, where the number of ICs is usu-
ally equal to the number of EEG channels, normally correspond-
ing to the rank of the data. However, CORRMAP also accepts a
different number of ICs per dataset (in case of rank-deficiency
or prior dimensionality reduction), thus providing greater flexi-
bility. CORRMAP can also deal with variations in EEG channel
numbers within a dataset, such as happens in the case of defec-
tive channels. In this case, CORRMAP requests a channel config-
uration file, and the inverse weights for missing electrodes are
then automatically replaced using a modified version of the EEG-
LAB function eeg_interp(). All CORRMAP functions are written in
Matlab (The MathWorks, Inc., MA, USA) and designed as a plug-
in for the EEGLAB toolbox (Delorme and Makeig, 2004). CORR-
MAP is available under the General Public Licence (GPL-Free
Software Foundation, Inc., Boston, MA) and can be downloaded
from http://www.debener.de.
2.2. Validation study

In order to evaluate CORRMAP, we compared its performance in
the automatic mode with the visual identification and selection of
artifactual ICs from EEGLAB users familiar with ICA (further re-
ferred to as ‘users’). For that purpose, we used IC maps from three
different EEG studies recorded in three different EEG laboratories
and spanning 30–128 channels.

Study 1 is based on 16 resting EEG datasets from 4 different sub-
jects, recorded inside (1.5, 3 and 7 T) and outside (�0 T) the MRI
environment in Nottingham, UK, and published by Debener et al.
(2008b). Briefly, the EEG data were recorded using a 30-channel
MR-compatible EEG system (Brainamp MR, Brain Products GmbH,
Munich, Germany) and an electrode cap with an extended 10–20
layout (Easycap, Herrsching, Germany). Extended Infomax ICA
was performed on the continuous 30-channel EEG data. This study
consisted of a total of 480 ICs.

Study 2 comprised auditory evoked potential recordings from
16 subjects, recorded in Southampton, UK (Hine and Debener,
2007). Continuous EEG data were recorded using a 68-channel
infracerebral electrode cap (Easycap) connected to a Synamps2
amplifier (Compumedics, Charlotte, NC), and extended Infomax
ICA was performed on the concatenated single-trial EEG data. This
study consisted of a total of 1088 ICs.

Study 3 comprised 128-channel EEG data recorded in a cross-
modal semantic priming paradigm from 21 subjects using a Brain-
amps MR plus amplifier system and an equidistant electrode cap
provided by Easycap (Schneider et al., 2008). Data for this study
were recorded in Hamburg, Germany, and consisted of a total of
2688 ICs. Further information on experimental and data processing
details of the datasets used here are given in the respective publi-
cations of the three studies.

The inverse ICA weights (IC maps) from these three studies
were sent to 16 users from 16 different EEG laboratories experi-
enced with using ICA. Eleven users responded to our request and
returned the classification information. The IC maps were provided
as part of a Matlab program that displayed all maps in 2-D and re-
quired the user to input IC indices. For each dataset from each
study, the IC indices representing three different types of artifacts,
if present, had to be specified: eye blink ICs, lateral eye movement
ICs and heartbeat artifact ICs. Note that users were provided only
with the IC maps and did not have access to further information
such as raw data or component activations. This was done to con-
trol for the information type that had to be used by the users for
the classification. They received no further information except for
the number of EEG channels used on each study. The maximum
number of components they could select for each dataset and each
artifact type was set to 3 (see above for rationale). A single example
for each artifact type was provided. The selected indices were
saved in a file for further analysis. Manual clustering was per-
formed independently by the 11 users without time constraints.
None of the users had access to the clusters selected by the others
users. The users also indicated their experience with using ICA for
removing artifacts on a Likert rating scale (from 1 = novice/begin-
ner to 8 = expert).

2.3. Statistical analysis

CORRMAP was run in automatic mode, using as its input tem-
plates IC maps selected by visual inspection from the first dataset
in each study. The output of CORRMAP was compared to the ICs se-
lected by our users in three ways. First, we calculated the number
of users that identified ICs also selected by CORRMAP for a given
artifact type. Second, in order to evaluate whether users were sig-
nificantly more liberal or conservative than CORRMAP, we calcu-
lated a paired t-test (i.e., the mean difference between the

http://www.debener.de
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number of ICs identified by CORRMAP and each user) for each data-
set, study and artifact type. Note that this measure does not inform
about the degree of overlap between the ICs identified. Thus, in a
third step, we calculated the degree of overlap or association
(phi) between the users, and between the users and CORRMAP.
Phi represents the degree of association between two binary vari-
ables with values close to 1 representing a high degree of associa-
tion, and values close to 0 representing a low association. The
significance calculation of phi scores corresponds to the signifi-
cance calculation used for parametric correlations.

We also calculated the proportion of ICs that were missed by
the users. This is defined in respect of only those ICs picked
by CORRMAP and is the ratio of the total number of ICs picked
by the 11 users to the total possible (i.e., 11 multiplied by the
number of ICs selected by CORRMAP). As a ‘true’ classification
cannot be defined in real data, we used CORRMAP selection as
the reference.
3. Results

In automatic mode on a typical PC (2.13 GHz CPU), it took
CORRMAP between 11 s (Study 1, 480 ICs) and 44 s (Study 3,
2688 ICs) to compute the cluster and generate output figures for
further inspection. We are not aware of another clustering tool
capable of producing the same output within similar time param-
eters. Furthermore informal feedback provided by the users re-
vealed that they required substantially more than 30 min for
performing the same classification task.

The descriptive statistics and results for the significance tests
for all three studies and the three artifact types analyzed are sum-
marized in Table 1. The first three rows show the total number of
ICs identified by CORRMAP for each type of artifact for each study,
respectively.

In Study 1, the eye blink cluster consisted of 15 ICs from a total
of 16 datasets (four subjects in four separate experimental condi-
tions). For the eye blinks in the other two studies, the number of
ICs selected by CORRMAP was greater than the total number of
datasets (Study 2 = 16 datasets, Study 3 = 21 datasets), indicating
that in some cases more than one IC per dataset contributed to
the eye blink artifact. Fig. 3 shows a typical CORRMAP summary
plot for the eye blink cluster in Study 1. Each IC map is depicted
along with the absolute correlation with the template and informa-
Table 1
Number of independent components (ICs) Identified by CORRMAP and by users for
three artifact types for three studies.

Study Artifact type

Blink Lateral eye movements Heartbeat

Number of ICs identified by CORRMAP
(1) 30 Channels 15 13 4
(2) 68 Channels 24 15 7
(3) 128 Channels 47 22 7

Number of ICs identified by users

Mean SD Mean SD Mean SD

(1) 30 Channels 15.27 0.47 16.45 3.45 12.55 10.11
(2) 68 Channels 23.73 3.52 17.55 2.77 9.00 3.22
(3) 128 Channels 38.63 3.98 22.45 3.96 8.82 5.55

t-Test between users and CORRMAP (two-tailed)

t(10) p Value t(10) p Value t(10) p Value

(1) 30 Channels 1.94 0.08 3.33 <0.01 2.80 0.02
(2) 68 Channels �0.26 0.80 3.05 0.01 2.06 0.07
(3) 128 Channels �6.97 <0.001 0.38 0.71 1.09 0.30

Note. p values <0.05 were considered significant.
tion about the dataset to which it belongs. In this output, the mean
map is shown enlarged, together with the correlation with the
average map after the first iteration (below), and summary cluster
information (above). The line plot in the upper right hand corner
shows the sorted correlation values with the selected threshold
indicated by a dashed line. A threshold value of r = 0.94 was auto-
matically found by analyzing the similarity indices over a number
of iterations. The similarity indices from all iterations are shown in
the second line plot. A dashed line indicates the threshold used for
the cluster depicted; it points towards the highest similarity index
across all iterations performed.

For the other two artifact types analyzed, the total number of
ICs selected per cluster by CORRMAP was smaller than the total
number of datasets, except for the lateral eye movement cluster
in Study 3. For this study there was one dataset that contributed
more than one IC (not shown). In four out of the nine cases studied
(3 types of artifact, 3 studies), a significant (p < 0.05, see Table 1)
difference between the number of ICs selected by CORRMAP and
the number of ICs selected by the users was observed. Differences
were largest for heartbeat artifacts in Study 1 and eye blink arti-
facts in Study 3.

For the eye blink and eye movement artifacts in Studies 1 and 2
(30 and 68 channels, respectively), only a few ICs that were iden-
tified by CORRMAP were not selected by users (range between
1.2% and 11.7%, not shown) and vice versa. For Study 3 (128 chan-
nels) on the other hand, the ratio of missed ICs was 17.4% (lateral
eye movements) and 25% (blinks). For the heartbeat artifact cluster
this ratio ranged between 27.3% and 90.9%. This result reveals that
only a few heartbeat ICs identified by CORRMAP were selected by
some users, and the cluster of Study 1 includes a single IC that was
not selected by any of the 11 users.

Table 2 summarizes the evaluation of the overlap between
users and CORRMAP (first three rows) and across users (last three
rows). High degrees of association between users and CORRMAP
were found for ICs representing eye blinks (phi scores ranged be-
tween 0.83 and 0.99) and for ICs representing lateral eye move-
ments (phi scores ranged between 0.85 and 0.91). Evaluation of
the consistency across users also resulted in high phi scores for
these artifact types, suggesting that independent users were simi-
larly consistent in their classification between themselves as they
were with CORRMAP. However, for ICs representing heartbeat arti-
facts phi score calculations revealed only low to moderate degrees
of association both within users (range 0.19–0.65) and between
CORRMAP and users (range 0.07–0.71). This suggests that the iden-
tification of heartbeat artifacts by ICs is more difficult than the
identification of eye blinks or lateral eye movements.

The high degree of overlap between users and CORRMAP is
illustrated for the eye blink cluster of Study 2 in Fig. 4. The number
of users that indicated each IC is displayed on the top of each map.
The ICs are sorted in descending order of correlation with the clus-
ter average (not shown). In 19 out of the 24 ICs, a perfect match be-
tween users and CORRMAP was evident; that is, all 11 users
identified these 19 maps as representing eye blink artifacts. Of
the other five ICs selected by CORRMAP, only four were identified
by fewer than five users, indicating a moderate discrepancy.

Fig. 5 illustrates two types of discrepancy between CORRMAP
and users. Fig. 5A shows an example of two ICs selected by CORR-
MAP and both contributing to an eye blink artifact, but with only
one being consistently identified by all users. Fig. 5B, on the other
hand, shows one IC that was not selected by CORRMAP but was la-
belled as an eye blink by some of the users. In this case 4 out of 11
users mis-interpreted a possible brain event-related IC (cf. Delor-
me et al., 2007) as an eye blink. Topographically, this IC indeed
resembled a typical eye blink, but did not actually contribute to
eye blinks, as revealed by a comparison of the raw data with the
respective IC time course.



Fig. 3. Example CORRMAP output figure showing the eye blink artifact component cluster from 16 datasets recorded with 30 EEG channels. The plot displays information about
the cluster (top left) and, in the top right corner, the correlations sorted in descending order and with the correlation threshold used indicated in red. Below, the similarity indices
are plotted, illustrating the result of the automatic mode threshold detection. The iteration picked by the automatic mode is indicated in red. Below, all component maps (inverse
weights, in arbitrary units) identified as belonging to this cluster are shown, together with their correlation with the template and information about the original dataset and
component index therein. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)
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The high degree of association found for lateral eye movements
is illustrated by the cluster of Study 2 in Fig. 6A. Out of the 16 sub-
jects, 15 contributed one IC each to the CORRMAP cluster. In 10 out
of the 15, a perfect match between users and CORRMAP was evi-
Table 2
Degree of association between CORRMAP clusters and users’ identification of three artifac

Study Artifact type

Blink Later

Mean Range Mean

Association between CORRMAP and users
(1) 30 Channels 0.99 [0.93 1.00] 0.91
(2) 68 Channels 0.89 [0.85 0.94] 0.89
(3) 128 Channels 0.83 [0.76 0.87] 0.85

Association between users
(1) 30 Channels 0.99 [0.92 1.00] 0.93
(2) 68 Channels 0.89 [0.82 0.93] 0.90
(3) 128 Channels 0.91 [0.83 0.98] 0.75

a One user was excluded from the analysis.
dent, and only a single IC was selected by fewer than 10 users.
Here, as in the cluster shown in Fig. 4, a very high similarity be-
tween the resulting IC maps was found, irrespective of the polarity
reversal across ICs that can cause confusion. Fig. 6B, on the other
t types in three studies.

al eye movements Heartbeat

Range Mean Range

[0.71 0.96] 0.07a [�0.02 0.56]
[0.75 0.94] 0.62 [�0.01 0.84]
[0.61 0.95] 0.71a [�0.01 0.85]

[0.73 0.99] 0.19a [0.02 0.33]
[0.71 0.97] 0.65 [0.07 0.76]
[0.55 0.82] 0.58a [0.21 0.73]



Fig. 4. CORRMAP validation result for eye blink ICA components based on 16 subjects and 68 EEG channel recordings. The cluster was obtained by running CORRMAP in
automatic mode, which selected 24 components with a correlation value equal to or greater than 0.87. The number of users that labelled these components as representing an
eye blink artifact is represented at the top of each component map. Maps represent inverse weights in arbitrary units.

Fig. 5. Two examples showing inconsistencies between CORRMAP results and user selection. (A) Illustration of a representative eye blink artifact for a frontal channel (black),
and back-projected activities at this channel for the two ICA component maps displayed (blue and red). Note that the left component was identified by only 4 out of 11 users,
but shows a contribution to the eye blink. (B) An example where 4 out of 11 users have indicated an eye blink component not selected by CORRMAP. Inspection of the
component activity (in blue) in comparison to a representative channel eye blink (black) does not support the interpretation of this component as representing eye blinks.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)

874 F.C. Viola et al. / Clinical Neurophysiology 120 (2009) 868–877
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hand, illustrates the lower level of agreement found for the heart-
beat cluster of Study 2. In this case, CORRMAP found only seven ICs
from seven different datasets out of the 16 datasets in this study.
Note that none of these ICs was identified by all users.

4. Discussion

The aim of the present study was to evaluate a simple and
efficient procedure for the clustering of ICs representing EEG
artifacts. ICA has become a popular and powerful choice for
removing EEG artifacts (e.g., Jung et al., 2000a), but it requires
the correct interpretation of ICs by the user. This interpretational
step is required for brain-related as well as artifactual ICs, which,
ideally, should be robust across independent observations (i.e.,
subjects). Component identification and evaluation is a time-con-
suming and potentially error-prone process, as a large number of
ICs needs to be considered. Typically, the number of ICs in a
study is given by the product of the number of EEG channels
and the number of subjects. The EEGLAB plug-in CORRMAP
Fig. 6. CORRMAP validation result for lateral eye movement (A) and heartbeat artifact
cluster was obtained in automatic mode, which selected 15 components with a correlatio
for the raw data (blue, linear derivation of left and right fronto-lateral channels) and
locations). (B) Similar plot for the heartbeat artifact IC cluster. CORRMAP automatic mode
and B, the number of users that labelled the components as representing the respective
references to color in this figure legend, the reader is referred to the web version of thi
developed here can help to screen large numbers of components
quickly and objectively, and thus provides guidance for the iden-
tification and efficient removal of EEG artifacts such as eye
blinks and lateral eye movements.

In contrast to other available clustering approaches (Delorme
and Makeig, 2004), CORRMAP introduces a strategy that is focused
on just a single feature (inverse ICA weights). This allowed us to
code CORRMAP capabilities in a simple, quick, easy to revise and
user friendly way, while keeping the number of subjective deci-
sions to be performed by the user to a minimum: Users only need
to choose one template IC map to initiate clustering. In the current
version of CORRMAP, we have focused on the inverse IC weights as
the single clustering parameter. It should be noted, however, that
other features may be more useful for clustering other types of
processes identified by ICA. ICA for example has been shown to dis-
entangle mu rhythms from EEG alpha activity (e.g., Makeig et al.,
2002), but this classification probably requires the consideration
of spectral information in addition to, or instead of, topographical
information (Makeig et al., 2004b).
(B) ICA components based on 16 subjects and 68 EEG channel recordings. (A) The
n value equal to or greater than 0.91. An example of lateral eye movements is shown
the back-projected component (red, for the component with indicated electrode
identified 7 components with a correlation value equal to or greater than 0.91. In A

artifacts is displayed on the top of each component map. (For interpretation of the
s paper.)
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It is our experience that a careful visual inspection of EEG
raw data, and the ICA decomposition, helps to substantially im-
prove the quality of the decomposition and ultimately the qual-
ity of the artifact correction and thus the signal quality that can
be achieved. However, if the focus is on ICA-based artifact cor-
rection, CORRMAP quickly guides the visual inspection of ICA
decompositions and reduces the time necessary for data evalua-
tion to a minimum. It may be argued that, in order to maximize
the performance of CORRMAP, the template selected should be
representative of the type of artifact to be removed. This selec-
tion in itself requires some experience with ICA and the consis-
tency of ICA decompositions across different recordings. The
CORRMAP output facilitates the identification of representative
ICs, and in the fully automatic mode, the resulting cluster is to
a substantial extent independent of the exact template chosen,
as long as the template belongs to the same group of ICs. It is
possible to quickly and easily compare the effects of different
templates on the clustering output of CORRMAP. This approach
not only helps to select representative cluster templates, but also
helps to build up experience in using and understanding the
benefits and limitations of ICA in the processing of EEG data.
Accordingly, CORRMAP also provides some potential for the
teaching of lab members about the identification, consistency
and interpretation of ICs.

In many situations it should be sufficient for the user to choose
the automatic mode feature, allowing the tool to suggest the best
correlation threshold. This approach would be particularly useful
for less experienced ICA users, or for situations where CORRMAP
is being used to evaluate the robustness of ICA by evaluating the
presence of specific components. In our experience the automatic
mode reveals reasonable results, in particular for eye blink and lat-
eral eye movement IC clusters, but it is important to regard the
automatic threshold as a first guiding value only. In some situa-
tions it may be necessary to adjust the threshold after inspection
of the cluster initially obtained.

Importantly, by comparing the classification of 11 users with
CORRMAP, we observed that there was a large overlap in the selec-
tion of ICs representing eye blinks and lateral eye movements,
probably because all users are very experienced with these types
of common EEG artifacts. The main benefit of artifact removal with
CORRMAP is that it provides an objective, repeatable and quick
method for identifying artifact-related ICs.

On a descriptive level, the overlap between users and CORRMAP
was larger for studies comprising fewer channels and therefore
fewer ICs. We attribute the low consistency observed for high-den-
sity data to the ICA ‘over-fitting’ problem that is more evident in
high-density than low-density EEG recordings. With high-density
recordings it is commonly observed that the same physiological
process can be represented in a number of ICs (typically less than
4), making its identification more complicated and thus error-
prone. As a result, several ICs that account for the same process
can be included in the same decomposition, and the number of
ICs to be attributed to the same process may thus vary across data-
sets and laboratories, causing some confusion. CORRMAP ad-
dresses this issue by allowing the selection of up to three ICs per
dataset for any one artifact. On the other hand, users with less
experience in analysing high-density data may have expected only
one IC, or very few ICs, as representative of a physiological process
such as eye blinks. In this case, we would conclude that using
CORRMAP can result in a cluster of ICs more representative of
the artifact in question than might be possible for an inexperienced
user.

Much less prominent, and therefore less well known by EEG
researchers (including many users that participated in the vali-
dation study), are heartbeat artifacts. The prominence of heart-
beat artifacts in EEG data depends on the recording reference,
with the nose-tip reference usually allowing for a better identi-
fication than linked earlobes or vertex. The other factor is the
spatial sampling of the head sphere, and thus the recording
montage used. The recording montage used in Study 2 (Hine
and Debener, 2007) included infracerebral electrode sites, similar
to the layout of the geodesic sensor net as provided by Electrical
Geodesics Inc. (Eugene, OR), to improve the spatial sampling of
the EEG. However, electrodes placed at the lower half of the
head sphere are closer to the heart, and thus prone to pick up
more electrical heartbeat activity by means of volume conduc-
tion. As a result, ICA decompositions of Study 2 included ICs
reflecting a heartbeat artifact in most data sets, which was not
the case for Studies 1 and 3. In Study 1 (Debener et al.,
2008b), a scalp reference (Fcz) was used in combination with a
10–20 electrode layout, whereas in Study 3 (Schneider et al.,
2008), although a nose-tip reference was used, electrode layout
was similar to the 10–10 system only. Moreover, in Study 1,
most ICs classified by users as heartbeat ICs in fact probably re-
flected residual ballistocardiogram activity, which is typical of
EEG data recorded inside an MRI scanner (Debener et al.,
2008b). The topographies of these ICs resemble those that can
be attributed to electrical heartbeat activity, but, as only two
users were familiar with analysing EEG data recorded inside an
MRI scanner, a mis-attribution may have contributed to the
rather poor overlap between CORRMAP and users. Furthermore,
heartbeat artifact, and the related topography, is less well known
among EEG researchers than, say, eye blinks, probably because it
less frequently affects EEG recordings. Accordingly, the results
also represent, to some extent, the familiarity of users with the
different artifact topographies investigated, among which the
heartbeat artifact topography is probably the least common.

While a ‘true’ best classification cannot be easily determined in
real data, the examples discussed above highlight possible reasons
for poor classification outcomes and poor inter-rater reliability. It
should be noted, however, that a detailed investigation of the sen-
sitivity of CORRMAP was beyond the scope of this study. Such a
validation approach would require the use of artificial data, where
the ground truth (i.e., the number and type of artifact ICs per data-
set) is known. A study based on simulated data could be performed
to examine, and further compare, the performance of users and
software (such as CORRMAP), and would complement the current
approach.

In conclusion, CORRMAP has proved to be efficient, quick, and at
least as consistent as a group of 11 ICA users from different labora-
tories in the classification of eye blink and lateral eye movement
ICs. This was made possible by focusing solely on topographic
information as a single clustering parameter. Other types of infor-
mation should of course be considered for the detailed examina-
tion of ICs, in particular those representing brain-related activity
(e.g., Debener et al., 2005a,b; Makeig et al., 2002, 2004a; Onton
et al., 2005) or more complex artifacts such as those caused by co-
chlear implants (Debener et al., 2008a). CORRMAP could be further
optimized to take into account such parameters, making it poten-
tially useful for clinical applications. However, if the focus is on
EEG artifact removal, in particular eye blinks and lateral eye move-
ments, then CORRMAP in combination with ICA provides a power-
ful, user-friendly approach.
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